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General aspects concerned with (001)-, (110)- and (111)-

oriented superlattices (SLs) have been investigated. In

particular, the symmetry of these systems have been derived

and given in detail. As a test, the obtained data have been

utilized to calculate electronic structures and gaps of a

standard GaAs/AlAs system using an accurate version of the

first principle full potential linear muffin-tin orbital

(FPLMTO) method based on a local-density functional

approximation (LDA).
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1. Introduction

It is well known that the crystal orientations have a significant

impact on their properties and their potential applications.

They can be generated artificially during the growth process

but they can also occur naturally since a change of orientation

can be induced by temperature or pressure (Sutrakar et al.,

2012). The study of the orientation effect on superlattices and/

or quantum wells is a well documented topic and is still of

actuality and importance (Kajikawa, 2012; Assa Aravindh et

al., 2012). The presence of built-in permanent piezoelectric

fields in (111)- and (311)-oriented superlattices (SLs) and the

progress in crystal growth processes have renewed the interest

in these systems due to the potential they present for nano-

phononics which manipulates sound and heat at the nanoscale

(acoustic phonons of gigahertz–terahertz frequencies and

nanometer wavelengths; Reparaz et al., 2010; Rozas et al.,

2005, 2008; Mintairov & Melehin, 1999; Lambert & Srivastava,

1999). The importance of these systems is also greatly due to

the intrinsic limitations of the ‘usual’ nanowave phononic

devices represented by mirrors, cavities and monochromatic

phonon sources, due to the weakness of their deformation

potential which couples acoustic phonons to electrons.

Piezoelectric fields can be induced by strain in zinc blende

phases and their (001)-oriented SLs, but these structures do

not present spontaneous electric fields because of their high

degree of symmetry. However, it has been observed that if the

growth axis of the SL is different from (001), noncentrosym-

metric crystals are obtained with large, permanent and spon-

taneous strain-induced piezoelectric fields (they can reach

more than 105 V cm�1; Smith, 1986; Mailhiot & Smith, 1987;

Laurich et al., 1989; Caridi et al., 1990). Huge efficiencies for

coherent acoustic phonon generation have been reported in

GaInN/GaN SLs and a similar effect was reported in piezo-

electric GaInAs/AlAs SLs (Reparaz et al., 2010; Rozas et al.,

2008).

Earlier, it has been shown that these permanent built-in

piezoelectric fields can also be used to produce a 2DEG (two-

dimensional electron or hole gas) in order to replace the

extrinsic doping (Snow et al., 1990). Compared with the (001)-
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SLs, the piezoeletrically active (111)-SLs were found to

possess large and linear electro-optic coefficients (Mailhiot &

Smith, 1988a) and a much more pronounced variation of their

resistivity (Konczewicz et al., 2001). These fields modify the

optical properties of the SL and can lead to very strong

nonlinearities (Mailhiot & Smith, 1988b; Smith & Mailhiot,

1987) which are useful for non-linear optical devices (Mailhiot

& Smith, 1987). Growth directions other than (001) can also

be used to obtain a high mobility carrier (Los et al., 1995) and

to modify the opto-electronic properties (Mireles & Ulloa,

2000). Epitaxial growth along the nonprincipal (001) crystal-

lographic axis has allowed the fabrication of quantum well

lasers of good quality (Batty et al., 1989; Meney, 1992;

Foreman, 1994; Hayakawa, Kondo et al., 1988; Hayakawa,

Suyama et al., 1998a,b; Hayakawa, Takahashi, Kondo et al.,

1988a,b; Hayakawa, Takahashi, Suyama et al., 1988). In the

high-temperature regime, polar optical phonon scattering is

found to contribute to the increase in thermoelectric power S

as has been observed in (111)-oriented PbTe/PbEuTe multiple

quantum-wells (Koga et al., 1999). Different values of the

magnetocrystalline anisotropy have been obtained in (001)-,

(110)- and (111)-oriented Co-Pt SLs because of the epitaxy

along different orientations which can induce defects and local

lattice distorsions (Lee et al., 1990).

To our knowledge the problem of SLs with various growth-

axis directions has often been addressed by means of the

envelope function approach (Kajikawa, 2012; Los et al., 1995;

Hayakawa, Kondo et al., 1988; Hayakawa, Suyama et al.,

1998a,b; Hayakawa, Takahashi, Kondo et al., 1988a,b; Haya-

kawa, Takahashi, Suyama et al., 1988; Vina & Wang, 1986; El

Khalifi et al., 1990; Gil et al., 1990) and rarely by other methods

such as the tight-binding approach (Wang & Ting, 1995) or the

first-principles methods (Assa Aravindh et al., 2012; Rubio et

al., 1994; Picozzi et al., 1997; Magri, 1990; Bungaro & Rabe,

2002; Tair et al., 2007; Badi et al., 2008). The first-principles

methods are particularly needed to investigate microscopically

these specific systems.

Our aim here is to investigate the symmetry of (111)-

oriented SLs but also to give all the details concerning the

(001) and (110) symmetries. These details are presented in

such a way that they can be directly implemented in the

LmtART code (Savrasov, 1996) which uses an accurate first-

principles full-potential linear muffin-tin orbital (FPLMTO)

band-structure method. Standard GaAs/AlAs SLs have been

selected for the test since the latter are well known materials

and do not present any complication for convergence. The

paper is organized as follows: In x2 the crystallographic

parameters of our SL crystals are calculated. In particular, the

case of (111)-SLs has been emphasized while the (001)- and

(110)-SLs have been summarized and all the details necessary

for the lmtART implementation are given. In x3 the results of

x2 are applied to GaAs/AlAs standard SLs. A general

conclusion is then given in x4.

2. Crystallographic investigation

The investigated structures consist of ideal quantum well

superlattices SL(m,n) made of a periodical sequence of m

monolayers of GaAs atoms and n monolayers of AlAs atoms

(a monolayer contains two atoms, one cation and one anion).

For convenience, only cases for which (m + n) is even are

considered here. Bulk GaAs and AlAs have zinc-blende-like

structures and their SL systems have different symmetries

depending on their orientation (growth axis). Both (001)- and

(110)-oriented SLs have a tetragonal symmetry but the case of

(111)-oriented SLs is more complicated: both the (111)-SL

direct and reciprocal primitive cells resemble greatly the case

of face-centred cubic (f.c.c.) crystals with the little difference

that the length of one primitive translation vector is different

from the two other primitive vectors length; more details are

given below. Some details and discussion on the symmetry of

(001)- and (110)-oriented SLs can also be found in previous

works (Gell et al., 1987; Tair et al., 2007; Badi et al., 2008).

Details concerned with the (111)-SLs are more difficult to find

in the literature but are not totally absent (Magri, 1990;

Bungaro & Rabe, 2002).

The primitive translation vectors (PTV) of the direct lattice

of the bulk materials write: ax = (1,0,1)a0/2; ay = (1,1,0)a0/2;

az = (0,1,1)a0/2, where a0 represents the lattice parameter of

the bulk. The PTV of their reciprocal lattice write: gx =

(1,�1,1)2�/a0; gy = (1,1,�1)2�/a0; gz = (�1,1,1)2�/a0. Any

other vector of the reciprocal lattice of bulk writes as a linear

combination of the latter: Gbulk = hgx + kgy + lgz = (2�/a0)(h +

k � l, �h + k + l, h � k + l), where h, k and l are positive or

negative integers. The volume of the bulk direct primitive unit
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Figure 1
The direct zones of the bulk semiconductor and a (001)-growth axis
SL(1,1). The set of primitive translation vectors ax(001), ay(001), and az(001)

of the SL (1,1) are also shown. i, j and k are the Cartesian unitary vectors.
Every dot represents a node containing two atoms, one anion and one
cation. a0 and aSL represent the lattice constants of the bulk and the
superlattice respectively.



cell is Vbulk = a0
3/4 and there are two atoms per unit cell, one

Ga (or Al) and one As.

The PTV of the direct lattice of (001)-SL write: ax(001) =

(1,1,0)a0/2; ay(001) = (�1,1,0)a0/2; az(001) = (0,0,L)a0, with L =

(m + n)/2. The volume of the (001)-SL direct primitive unit cell

is V(001) = La0
3/2 which means that V(001)SL = 2LVbulk, and

there are 4L = 2(m + n) atoms per unit cell: m atoms of Ga, n

atoms of Al, and (m + n) atoms of As. In Fig. 1 we show the

direct lattice of a (001)-growth axis SL(1,1) made up of an

alternation of one monolayer of GaAs and another one of

AlAs. The link between the bulk and the SL direct lattices is

shown in the figure. The (001)-SL unit cell has a tetragonal

symmetry with ax(001) = ay(001) = aSL = a0/
ffiffiffi
2
p

and az(001) = La0

so that in theory we have az(001)/ax(001) = L (In the first-prin-

ciples structural calculations, we can also try to obtain this

az(001)/ax(001) ratio by minimization).

The position of any atom which writes R = xi + yj + zk in the

orthonormal Cartesian set, (i, j and k being its unitary

vectors), writes in the (001)-SL PTV set as: R = x0ax(001) +

y0.ay(001) + z0.az(001). Thus

R ¼ ðx0 � y0Þ=2iþ ðx0 þ y0Þ=2jþ Lz0k: ð1Þ

The coordinates x0, y0 and z0 of R in the (001)-SL

PTV set can easily be inferred from its x, y and z

coordinates in the orthonormal Cartesian set, we

have x = (x0 � y0)/2, y = (x0 + y0)/2 and z = Lz0, so that

x0 = x + y, y0 = y � x and z0 = z/L. An example of the

atomic coordinates set which must be involved in the

cases of L = 1 and L = 2 is listed in Table 1. For

example, if we have a (001)-SL(1,1), the GaAs

atomic positions in (i,j,k) are (0,0,0) and (1/4,1/4,1/4)

for Ga and As (first and second lines in Table 1),

respectively, and those corresponding to AlAs are

(0,1/2,2/4) and (1/4,3/4,3/4) for Al and As (third and

fourth lines in Table 1). The corresponding coordi-

nates in the (001)-SL PTV set are also shown in this

table. In our calculations, we preferred to use x0, y0

and z0 coordinates and the (001)-SL PTV set as an input. In

doing so we have to consider ax(001) as the lattice constant and

to set ay(001)/ax(001) = 1, az(001)/ax(001) =
ffiffiffi
2
p

L [it is as if we have

taken another orthonormal Cartesian set ax(001), ay(001) and

az(001) with the third vector having a different length from the

two others, we then selected the ‘Cartesian system’ option in

the Mindlab visual environment of the lmtART code

(Savrasov, 1996)].

The reciprocal lattice of the (001)-SL is represented in Fig. 2

for all values of m and n, m + n being even [by anticipation, it

has been presented in a unified manner in the case of the

(110)-SL]. In the case of a (001)-SL(m,n), the high-symmetry

points B and Y are always identical to R and X, respectively.

This last remark also holds for the (110)-SL, but only in the

particular case of m = n = 1.

Fig. 3 shows how the direct lattice of a (110)-growth axis

SL(1,1) is constructed in the XY plane inside the bulk host
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Table 1
Coordinates of the atomic positions in successive planes of the (001)-SL.

Each successive line corresponds to a plane containing Ga (or Al) in the first one and As
in the second line. The planes involved in (001)-SL(m,n) with m + n = 2 are the four first
lines and those involved in the case of m + n = 4 are all the eight listed lines. We have used
no simplification (for example, we have written 4/4L instead of 1/L) in order to show to
the reader how to easily infer the following lines.

x y z x0 y0 z0

mþ n ¼ 4;
i:e: L ¼ 2

9>>>>>>>>=
>>>>>>>>;

mþ n ¼ 2;
i:e: L ¼ 1

9>>=
>>;

0 0 0

!

0 0 0
1/4 1/4 1/4 1/2 0 1/4L
0 1/2 2/4 1/2 1/2 2/4L
1/4 3/4 3/4 1 1/2 3/4L
0 0 4/4 0 0 4/4L
1/4 1/4 5/4 1/2 0 5/4L
0 1/2 6/4 1/2 1/2 6/4L
1/4 3/4 7/4 1 1/2 7/4L

Figure 2
The Brillouin zone of both (001)- and (110)-growth axis SLs. The high-
symmetry points B and Y are identical to R and X in the case of the (001)
superlattices for any m and n (m + n being even), and for the (110)
SL(1,1) but they are different for all other cases.

Figure 3
The X–Y contour plot of the direct zones of both bulk semiconductor and
a (110)-growth axis SL(1,1). The set of primitive translation vectors ax(110)

and ay(110) of the SL (1,1) are also shown in this figure. i, j (and k) are the
Cartesian unitary vectors. The third primitive translation vector, az(110)

(not represented), is equal to k. Every dot represents a node containing
two atoms, one anion and one cation. a0 and aSL represent the lattice
constants of the bulk and the superlattice. In general ay(110) 6¼ ax(110),
except when m = n = 1 as in the present figure.



materials. The direct lattice for a (110)-SL(1,1) is the same as

that of the (001)-SL(1,1), the difference between these two

kinds of SLs starts to appear from m + n� 2. The link between

the bulk and the (110)-SL direct lattices is shown in the figure.

The (110)-SL unit cell has a tetragonal symmetry with ax(110) =

aSL = a0/
ffiffiffi
2
p

, ay(110)/ax(110) = L and az(110)/ax(110) =
ffiffiffi
2
p

. (In first-

principle calculations, we can also try to obtain these two

ratios by minimization.) As pointed out above, the reciprocal

lattice of both (001)- and (110)-growth axis SL(m,n) can be

represented in a unified manner for all values of m and n, m +

n being even (Fig. 2). We shall note that for the (110)-SL, the

high-symmetry points B and Y are identical to R and X,

respectively, when m = n = 1. However, B becomes different

from R and Y from X for all other values of m and n (m + n

being even).

The PTV of the direct lattice of the (110)-SL write: ax(110) =

(1,�1,0)a0/2; ay(110) = (L,L,0)a0/2; az(110) = (0,0,1)a0, with L =

(m + n)/2. The volume of the (110)-SL direct primitive unit cell

is also V(110) = La0
3/2, i.e. V(110)SL = 2LVbulk like for the

previous (001)-SL. Here also there are 4L = 2(m + n) atoms

per unit cell: m atoms of Ga, n atoms of Al, and (m + n) atoms

of As. The coordinates x0, y0 and z0 of the position R of any

atom in the (110)-SL PTV set is linked to its x, y

and z coordinates in the i, j, k orthonormal

Cartesian set via the relations: x0 = x � y, y0 = (x +

y)/L and z0 = z. An example of the atomic coor-

dinates set which is involved in the cases of L = 1

and L = 2 is shown in Table 2. As for the previous

(001) direction, here we preferred to use x0, y0 and

z0 coordinates and the (110)-SL PTV set as input,

so ax(110) is set as the lattice constant, ay(110)/ax(110)

= L and az(110)/ax(1101) =
ffiffiffi
2
p

. We note that the high-

symmetry points B and Y of the reciprocal lattice

of the (110)-SL (Fig. 2) are identical to R and X

only in the particular case of m = n = 1 and become

different for all other values of m and n.

The case of (111)-oriented SLs is more

complicated. For reasons of clarity, in Fig. 4(a) we

separately show three successive monolayers

(each one containing two atoms, Ga and As or Al

and As); the i, j, k Cartesian unitary vectors are

also shown. The unitary cell of the present (111)-

SL is presented in Fig. 4(b) in which we remark on

the non-orthonormal unitary basis set i0, j0, k0.

These two figures are grouped in Fig. 4(c) to show

all the details. The relation between these two sets

are: i0 = (i + k)/2, j0 = (j + k)/2 and k0 = L(i + j), with

L = (m + n)/2, m + n being even. i0, j0, k0 are the

PTV of the (111)-SL.

The present unitary cell with the non-ortho-

normal unitary basis set i0, j0, k0 resembles a little

that corresponding to the f.c.c. symmetry, the

difference being that the third vector has a

different length [it is L.(i + j) for (111) SL while it

is (i + j)/2 for f.c.c.]. Thus, the calculation of the

first Brillouin zone will give us an octahedron like

for f.c.c. with the difference that it will be

‘compressed’ in the third direction.

In order to perform first-principle calculations on (111)-SLs,

we preferred to write the coordinates of i0, j0, k0 which

constitute the PTV of the (111)-SL using an orthogonal basis

i0, j0, k0 of a tetragonal elementary cell (Fig. 5). The volume of

the primitive cell is V(111) primitive cell = ||(i0 � j0)k0|| = La0
3/2, and

the volume of the present tetragonal non-primitive cell is

V(111) elementary cell = ||(i0
� j0)k0|| = 4La0

3, it is easy to check

that the multiplicity of the elementary cell is 8 (eight) by

performing the calculation of the ratio (Velementary cell/Vprimitive

cell). We also have V(111) elementary cell = 16LVbulk, V(111) primitive

cell = 2LVbulk, and 4L = 2(m + n) atoms per unit cell [m for Ga,

n for Al, and (m + n) for As]. We have the following relations:

i0 = (i� j), j0 = L(i + j) and k0 = 2k, so that i = (i0 + j0/L)/2, j =

(�i0 + j0/L)/2 and k = k0/2. We can also find a relation between

these vectors and the set vectors of the primitive cell: i0 = (i0 +

j0/L + k0)/4, j0 = (�i0 + j0/L + k0)/4 and k0 = j0. Let us note that

the lattice parameters of this tetragonal multiple cell are all

different: ax(111) = aSL = ||i0|| = a0

ffiffiffi
2
p

, ay(111) = ||j0|| = La0

ffiffiffi
2
p

, and

az(111) = ||k0|| = 2a0. Thus, ay(111)/ax(111) = L and az(111)/ax(111) =ffiffiffi
2
p

(also here one can try to obtain these ratios by mini-

mization for first-principle calculations).
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Table 2
Coordinates of the atomic positions in successive planes of the (110)-SL.

Each successive line corresponds to a plane containing Ga (or Al) in the first line and As in
the second line. The planes involved in a (001)-SL(m,n) with m + n = 2 are the four first lines
and those involved in the case of m + n = 4 are all the eight listed lines.

x y z x0 y0 z0

mþ n ¼ 4;
i:e: L ¼ 2

9>>>>>>>>=
>>>>>>>>;

mþ n ¼ 2;
i:e: L ¼ 1

9>>=
>>;

0 0 0

!

0 0 0
1/4 1/4 1/4 0 1/2L 1/4
1/2 0 1/2 1/2 1/2L 1/2
3/4 1/4 3/4 1/2 2/2L 3/4
1/2 1/2 0 0 2/2L 0
3/4 3/4 1/4 0 3/2L 1/4
1 1/2 1/2 1/2 3/2L 1/2
5/4 3/4 3/4 1/2 4/2L 3/4

Table 3
Coordinates of the atomic positions in successive planes of the (111)-SL.

Each successive line corresponds to a plane containing Ga (or Al) in the first line and As in
the second line. The first and second planes have to be involved in the case of a (111)-SL(m,n)
with m + n = 2. If one deals with the case of m + n = 4, the four first planes have to be involved
etc.

(x, y, z) (x0, y0, z0)

First plane (0, 0, 0)

!

(0, 0, 0)
T = (1/4, 1/4, 1/4) (0, 1/4L, 1/8)

Second plane R = (1/2, 1/2, 0) (0, 2/4L, 0)
R + T = (3/4, 3/4, 1/4) (0, 3/4L, 1/8)

Third plane 2R = (1, 1, 0) (0, 4/4L, 0)
2R + T = (5/4, 5/4, 1/4) (0, 5/4L, 1/8)

Fourth plane 3R = (3/2, 3/2, 0) (0, 6/4L, 0)
3R+T = (7/4, 7/4, 1/4) (0, 7/4L, 1/8)

Fifth plane 4R = (2, 2, 0) (0, 8/4L, 0)
4R + T = (9/4, 9/4, 1/4) (0, 9/4L, 1/8)

Sixth plane 5R = (5/2, 5/2, 0) (0, 10/4L, 0)
5R + T = (11/4, 11/4, 1/4) (0, 11/4L, 1/8)
– –

nth plane (n � 1)R = ((n � 1)/2, (n � 1)/2, 0) (0, (2n � 2)/4L, 0)
(n � 1)R + T = ((2n � 1)/4, (2n � 1)/4, 1/4) (0, (2n � 1)/4L, 1/8)



The coordinates x0, y0 and z0 of the position R of any atom

in the i0, j0, k0 set is linked to its x, y and z coordinates in the i,

j, k orthonormal Cartesian set via the relations: x0 = (x � y)/2,

y0 = (x + y)/2L and z0 = z/2. Hence, the atomic position writes:

R = xi + yj + zk = x0i0 + y0j0 + z0k0. So, knowledge of the

atomic positions in the Cartesian basis allows us to infer their

coordinates in the present i0, j0, k0 set. An example of the

atomic coordinates set which is involved is shown in Table 3.

This table dedicated to (111)-SLs is presented differently from

the previous cases: the atomic positions, which have to be

involved in the atomic basis, are given following the plane to

which they belong (plane 1, plane 2 etc.). For example, if we

have to calculate a (111)-oriented SL(1,1), we take the first

plane for GaAs and the second plane for AlAs, and if we want

to calculate a (111)-oriented SL(4,2), we take the first four

planes for GaAs and the following two planes for AlAs etc.

The set vectors A, B and C of the primitive cell of the

reciprocal lattice of (111)-oriented SL have been calculated

A ¼ 2�ðj0 � k0Þ=Vprimitive cell ¼ ð2�=a0Þð�iþ j� kÞ ð2Þ

B ¼ 2�ðk0 � i0Þ=Vprimitive cell ¼ ð2�=a0Þði� j� kÞ ð3Þ

C ¼ 2�ði0 � j0Þ=Vprimitive cell ¼ ð2�=a0Þð�i� jþ kÞ=2L: ð4Þ

It is easy to remark from these relations that, as pointed out

above, the primitive cell of the reciprocal lattice of (111)-SL is

similar to the f.c.c. cell with the difference that the third vector

is ‘compressed’ by a factor of 2L. Hence, the high-symmetry

points of (111)-SL will resemble those of f.c.c. in two directions

and be different in the third by a constant factor. For example,

in f.c.c. there are six equivalent X points, but in the present

(111)-SL there are only four equivalent X points (denoted

here as X1 and X2), while the two others denoted by X3 will

not be equivalent to them. This is how we obtained them in the

Cartesian orthonormalized (i, j, k) set (note that ax(111) = a0ffiffiffi
2
p

)

C ¼ 0; 0; 0ð Þ ð5Þ

M �L1 � B ¼
2�

a0

i� j� kð Þ

¼
2�

að111ÞSL

ffiffiffi
2
p

i�
ffiffiffi
2
p

j�
ffiffiffi
2
p

k
� �

ð6Þ

M �L2 � A ¼
2�

a0

�iþ j� kð Þ

¼
2�

að111ÞSL

�
ffiffiffi
2
p

iþ
ffiffiffi
2
p

j�
ffiffiffi
2
p

k
� �

ð7Þ

L �L3 � C ¼
2�

a0

1

2L
�i� jþ kð Þ

¼
2�

að111ÞSL

�

ffiffiffi
2
p

2L
i�

ffiffiffi
2
p

2L
jþ

ffiffiffi
2
p

2L
k

� �
ð8Þ

X �X1 � Bþ C ¼
2�

að111ÞSL

�� ffiffiffi
2
p
�

ffiffiffi
2
p

2L

�
i

�
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Figure 4
The construction of the primitive cell of a (111)-SL. aSL(111) represents the
lattice constant of the superlattice. (a) Three successive monolayers (each
one containing two atoms, Ga and As or Al and As); (b) the unitary cell
of a (111)-SL(1,1) with a non-orthonormal unitary basis set i0, j0, k0; (c) all
the details of (a) and (b) grouped.



X �X2 � Aþ C ¼
2�

að111ÞSL
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: ð11Þ

From these relations we see that L1 and L2 are equivalent;

they will be denoted by the same M symbol, while the third

point, denoted L (or L3), which is obtained directly from

reciprocal lattice vectors, similar to the previous two points,

has a different length. This also holds for the equivalent points

X1 and X2, which will both be denoted by the symbol X, while

the remaining point which is obtained by a similar combina-

tion of reciprocal lattice vectors has a different length and will

be denoted as Z (or X3). These relations have to be rewritten

in the (i0, j0, k0) set because we have used it to write the PTV

and the positions of the atoms constituting the basis. The

following relations are obtained

C ¼ 0; 0; 0ð Þ ð12Þ
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In our band structure calculations we will use the symbols

X, M, C, L and Z. Fig. 6(a) shows the ‘compressed’ octahe-

dron, which represents the first Brillouin zone of our (111)-

oriented SL symmetry. For comparison we also show the well

known octahedron which represents the first Brillouin zone of

an f.c.c. (Fig. 6b).

research papers

Acta Cryst. (2012). B68, 378–388 Touaa and Sekkal � Crystallographic input data for superlattices 383

Figure 5
The non-primitive elementary tetragonal cell (i0, j0, k0) selected for the
study of (111)-oriented SLs.

Figure 6
The first Brillouin zones (a) of our (111)-SL crystal which is represented
by a ‘compressed’ octahedron, and (b) of a face-cubic centred (f.c.c.)
crystal.



3. Application to band structure calculations

In this work we restrict ourselves to SLs with m + n � 6. Such

systems can be considered as ultrathin SLs (USLs), which

represent a special case to which several theoretical and also

experimental efforts have been devoted in the past. This

restriction is not only justified by the problem of time-

demanding calculations, but also by the fact that such an

investigation is sufficient for the present purpose. One very

important point in this work is that the calculation test will be

carried out on ideal cases in which all atoms (belonging to

bulks or SLs) are located in ideal positions. The choice of short

period USL systems makes this approximation

acceptable, by which we assume the lattice para-

meter to be the same everywhere in the crystal

since the distance between two consecutive inter-

faces is so small that a minimization calculation of

the lattice constant may be enough. Thus, no

relaxation calculation will be performed; this will

save a significant time at low cost for precision.

We have utilized the local density approximation

(LDA) based first principles FPLMTO method in its plane

wave (PLW-FPLMTO) version, as implemented in the

LmtART code (Savrasov, 1996). Compared with the FPLMTO

version based on atomic sphere approximation (ASA-

FPLMTO; Glötzel et al., 1980; Christensen, 1988; Lambrecht

& Segall, 1988), PLW-FPLMTO treats muffin-tin spheres

(MTS) and interstitial regions on the same footing, leading to

improvements in the precision of the eigenvalues. An

unscreened long-range LMTO representation (Andersen,

1975) was used, and the radial wavefunctions have been

adjusted to the spin average part of the potential in order to

make them independent from the spin index. The crystal is
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Table 4
The equilibrium lattice parameters for all cases (numerical values are in Å).

GaAs AlAs (001)-SL(1,1) (110)-SL(1,1) (111)-SL(1,1)

a0 = 5.649 a0 = 5.655 a0 = 5.652 a0 = 5.652 a0 = 5.652
– – aSL = ax = a0/

ffiffiffi
2
p

aSL = ax = a0/
ffiffiffi
2
p

aSL = ax =
ffiffiffi
2
p

a0

– – ay = ax ay = Lax ay = L ax

– – az =
ffiffiffi
2
p

Lax az =
ffiffiffi
2
p

ax az =
ffiffiffi
2
p

ax

Figure 7
The gap variations for (001)-oriented SLs: (a) the case of m = n; (b) the case of m + n = 4; (c) the case of m + n = 6; (d) the case of SL(1,3), i.e. m = 1 and
n = 3.



divided into two regions: non-overlapping muffin-tin spheres

(MTS) surrounding every atom, and an interstitial region

between these spheres. An MTS radius of 2.263 a.u. (atomic

units) was used for both Ga and Al, and 2.355 a.u. was used for

the As atom. These values were obtained by analyzing the

crystal Hartree potential built with the help of the superposed

atomic charge densities: this method is sufficient in the present

case of AlGaAs systems. In the present PLW-FPLMTO

calculation, the MTS have been taken to be non-touching for

all atomic configurations, therefore, the minimum possible

radii needs to be determined. Within the spheres, the non-

overlapping MTS potential is expanded in spherical harmonics

up to lmax = 6 (in all cases), and in the interstitial regions it is

Fourier transformed. The latter involves a number of plane

waves which are determined automatically by the cut-off

energies. The K-mesh is also set up differently following the

case. The iteration process is repeated until the calculated

total energy converges with a minimum accuracy of 10�7 Ry.

The exchange correlation energy of electrons is described in

the local density approximation (LDA) using the para-

meterization of Perdew & Wang (1992).

First, we calculated the equilibrium lattice parameters of

bulk GaAs, bulk AlAs and the three kinds of SLs in the m =

n = 1 case, i.e. (001)-, (110)- and (111)-oriented SL(1,1)

systems. Using the minimization procedure the total energy

was calculated for different values of the lattice constant, and

the equilibrium corresponds to the lowest value of the total

energy. Of course, the calculations for (001)- and (110)-

SL(1,1) give the same result since their symmetry is the same

for m = n = 1. Our calculations gave an equilibrium lattice

constant for SL(1,1), which is approximately the average value

of those of bulk GaAs and bulk AlAsa0 SLð1; 1Þ½ � =

a0 GaAs½ � þ a0 AlAs½ �ð Þ=2, and since the lattice parameters of

the two binaries are very close (minimization gives 10.68 and

10.69 a.u., i.e. 5.649 and 5.655 Å for GaAs and AlAs, respec-

tively), a0 SLð1; 1Þ½ � can be taken as to be equal to 10.685 a.u.,

i.e. 5.652 Å in all cases. The determination of the lattice

parameters ax, ay and az for the three growth axis can be

carried out using the formulae explained above and

summarized in Table 4. Let us remark that instead of the great

difference in symmetry between (110)- and (111)-SLs, their

ratios ay/ax and az/ax are similar. For (001)-, (110)- and (111)-
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Figure 8
The gap variations for (110)-oriented SLs: (a) the case of m = n for which some gaps have not been calculated when m = 1 because high-symmetry points
A, B and Y do not exist; (b) the case of m + n = 4; (c) the case of m + n = 6. In (a) some gaps have not been presented for m = n = 1 because some high-
symmetry points start to exist only after m + n > 4 in the case of the (110) direction (see above in the symmetry discussion).



SLs, the parameter aSL = ax will be equal to	 3.99, 	 3.99 and

	 7.98 Å. It is clear that in the present case, the virtual crystal

approximation (VCA) is valid and will be utilized for all other

cases of SLs with other values of m and n. The following

formula can be used to calculate a0 but will not give a signif-

icant difference from the value of a0 of SL(1,1): a0 SLðm; nÞ½ � =

m:a0 GaAs½ � þ n:a0 AlAs½ �ð Þ= mþ nð Þ. Again, we want to

underline that no minimization has been performed for the Y

and Z directions and also relaxation has been ignored because

we are dealing with thin SLs in which the distances between

interfaces are too small (see text above).

It is well known that when aluminium is predominant in the

AlGaAs ternary, and also when short-period GaAs–AlGaAs

SLs are considered, these systems exhibit a type II config-

uration which is unsuitable for optical applications. For a

reasonably long period and for small concentrations of Al

these systems are type (I) SLs and are very good optical

materials. In the present work we assume these facts and

attract the attention of the reader to the fact that our purpose

is not the investigation of the optical properties of these

systems (which are in fact widely known), but to calculate the

symmetry parameters and to perform a ‘microscopic’ test of

the electronic properties of these systems for the different

orientations. By ‘microscopic’ we mean at the atomic scale

which is allowed by LDA-based first-principle methods.

Before calculating the band structures of (110)- and (111)-

oriented SL systems, it is very important for a comparison to

first revisit the case of the (001)-SLs. We see from Fig. 7(a) that

for m = n = 1, the high symmetry point R is in competition with

�, however, the �–R gap increases for higher values of m and

n while the �–� fundamental gap remains approximately

constant for all cases for which m = n. When m 6¼ n (Figs. 7b

and c), the �–� gap decreases rapidly with the number m of

GaAs monolayers. We have checked that the reason for this

behavior is that the (001) SL �–� gap follows the VCA; when

m = n this gap is the mean value of the gaps of the bulk

materials so that it remains constant (Fig. 7a). However, when

m 6¼ n it is close to the �–� gap of the material which occupies

the greater number of planes (Figs. 7b and c). This fact is not

as obvious as it seems to be because the �–� gap of the SL is

not only due to the �–� gaps of the bulks, but it takes its origin

from the contribution of several other bulk gaps. It can easily

be seen that this VCA behavior of the �–� gap is not obvious

from the example of other gaps, such as �–R and �–Z for

which the variation is clearly non-linear, the contribution of

the bulk gaps being different from one case to another.
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Figure 9
The gap variations for (111)-oriented SLs: (a) the case of m = n; (b) the case of m + n = 4; (c) the case of m + n = 6.



From Fig. 7 we see that the bottom of the conduction band

(CB) is always located at �, except for SL(1,3) for which the

bottom of the conduction band at M is lower. However, there

is another wavevector k0 located between � and Z (Fig. 7d) at

which the gap is lower, but the differences between �–M, k0–�
and �––� are very small so the �–� gap can be considered as

the fundamental gap in general. In most cases, the �–M and �–

Z gaps are in competition.

From the fact that there is no competition with � for large m

and n, one can understand one of the reasons for which the

envelope function approximation (EFA) calculations is

suitable for such systems. EFA is derived from a K
P effective

mass Kane-like Hamiltonian and is therefore dedicated to the

Brillouin zone center at � (Nag, 2002). The second fact that

VCA works well (with the absence of significant bowing) for

the present systems makes the conclusions of the present

discussion independent from other parameters than the

symmetry induced by the different growth axis.

In the case of SL(1,1) for which m = n = 1, i.e. both (001)-

and (110)-SLs have identical direct and reciprocal lattices,

they begin to be different for m + n � 2. The (110)-oriented

SLs show some electronic similarities with the above (001)-

SLs: for m = n the �–� gap is almost constant (Fig. 8a), but for

m 6¼ n it decreases rapidly with the number m of GaAs

monolayers (Figs. 8b and c). The competition between gaps

shows some interesting features; high-symmetry points which

are in competition with �–� are different following the value

of m and n: In the case of SL(1,3), it is the �–X and �–Z gaps

which are approximately equal to the �–� fundamental gap

(Fig. 8b), but for m � 2 (so n � 4 when m + n = 6) it is the �–Y

gap which is in competition with the �–� gap (Fig. 8c). Apart

from the case of m = n = 1, no competition of �–� with �–R

and �–M gaps has been observed. In this case also we note

that VCA works well and that for increasing m + n the �–�
gap seems to be the fundamental gap without any competition.

This second remark is not true in the case of m = 3 and n = 1,

but this does not modify our conclusion because the latter is

still in the limits of small values of m + n.

Contrary to the (110)-growth axis SLs, the (111)-oriented

SLs are different from the (001)-SLs from the lowest values of

m and n. The most important difference with the other

orientations is that the �–� gap is always the fundamental one

and that there is no competition with other gaps. However, the

�–� gap variations look similar as for the previous orienta-

tions the latter is almost constant for m = n (Fig. 9a) and

decreases with m when m 6¼ n (Figs. 9b and c). In Fig. 10 we

have plotted the SL(3,3) band structures for the three orien-

tations. The most important difference between the (001) and

research papers

Acta Cryst. (2012). B68, 378–388 Touaa and Sekkal � Crystallographic input data for superlattices 387

Figure 10
The band structures of SL(3,3) in three orientations.



(110) orientations is the flat valence band observed between �
and M high-symmetry points in the (110) case, which means

that for (110) the whole effective mass in this direction is

significantly heavy. In the case of (111)-SL(3,3), it is clearly

seen that the �–� gap is the fundamental gap and at the

reverse of the other orientations all other gaps are higher than

the �–� gap.

4. Conclusions

The symmetries of standard GaAs–AlAs superlattices

oriented following the (001), (110) and (111) axes have been

investigated and given in detail. The parameters obtained

have been implemented and electronic properties of our

systems have been calculated within the accurate ‘plane wave’

extension of the FPLMTO method. The data presented in the

present paper may serve as a basis for further works dealing

with the influence of the growth axis at the nanoscale.
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